Protein affected by rare Parkinson’s mutation may lurk behind many cases of the disease

Mutations in the gene LRRK2 have been linked to about three percent of Parkinson’s disease cases. Researchers have now found evidence that the activity of LRRK2 protein might be affected in many more patients with Parkinson’s disease, even when the LRRK2 gene itself is not mutated. The study was published in Science Translational Medicineand was supported in part by the National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institutes of Health (NIH).

“This is a striking finding that shows how normal LRRK2 may contribute to the development of Parkinson’s disease,” said Beth-Anne Sieber, Ph.D., program director at NINDS. “This study also identifies LRRK2 as an integral protein in the neurobiological pathways affected by the disease.”

More than 10 years ago, researchers linked mutations in the LRRK2 gene with an increased risk for developing Parkinson’s disease. Those mutations produce a version of LRRK2 protein that behaves abnormally and is much more active than it would be normally.

Full story at Science Daily

Eye could provide ‘window to the brain’ after stroke

Research into curious bright spots in the eyes on stroke patients’ brain images could one day alter the way these individuals are assessed and treated. A team of scientists at the National Institutes of Health found that a chemical routinely given to stroke patients undergoing brain scans can leak into their eyes, highlighting those areas and potentially providing insight into their strokes. The study was published in Neurology.

“We were kind of astounded by this — it’s a very unrecognized phenomenon,” said Richard Leigh, M.D., an assistant clinical investigator at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and the paper’s senior author. “It raises the question of whether there is something we can observe in the eye that would help clinicians evaluate the severity of a stroke and guide us on how best to help patients.”

Full story at Science Daily

Waterlogged brain region helps scientists gauge damage caused by Parkinson’s disease

Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson’s disease, which destroys neurons important for movement. The development suggests that fluid changes in a specific brain area could provide a way to track that damage. The study, published in the journal Brain, was supported by the NIH’s National Institute of Neurological Disorders and Stroke (NINDS).

“By finding a new way to detect and track how Parkinson’s affects the brain, this study provides an important tool for assessing whether a drug might slow or stop those changes and keep symptoms from getting worse,” said NINDS Program Director Daofen Chen, Ph.D.

Full story of new method in observing brain changes in Parkinson’s at Science Daily

Predicting cognitive deficits in people with Parkinson’s disease

Parkinson’s disease is commonly thought of as a movement disorder, but after years of living with the disease, approximately 25 percent of patients also experience deficits in cognition that impair function. A newly developed research tool may help predict a patient’s risk for developing dementia and could enable clinical trials aimed at finding treatments to prevent the cognitive effects of the disease. The research was published in Lancet Neurology and was partially funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

“This study includes both genetic and clinical assessments from multiple groups of patients, and it represents a significant step forward in our ability to effectively model one of the most troublesome non-motor aspects of Parkinson’s disease,” said Margaret Sutherland, Ph.D., program director at the NINDS.

Full story of predicting cognitive deficits with Parkinson’s at Science Daily