Regulator of first responder cells to brain injury

Astrocytes are the most abundant cells in the brain, yet there is still much to learn about them. For instance, it is known that when the brain is injured or diseased astrocytes are the first responders. They become reactive and play roles that can be both beneficial and deleterious, but little is known about how these diverse responses to injury are regulated. Working with mouse models, a multi-institutional group led by researchers at Baylor College of Medicine has identified nuclear factor I-A (NFIA) as a central regulator of both the generation and activity of reactive astrocytes.

Unexpectedly, NFIA’s role seems to depend on the type of injury and on the region of the central nervous system where the injury occurs. The report also begins to define the molecular mechanisms involved, and shows that NFIA also is abundant in reactive astrocytes found in human pediatric and adult neurological injuries, suggesting that NFIA may play similar roles in people. The study appears in TheĀ Journal of Clinical Investigation. “Reactive astrocytes are associated with most forms of neurological disorders, from acute injury to degeneration, but their contributions to disease are only now coming to light,” said corresponding author Dr. Benjamin Deneen, professor of neurosurgery and the Center for Stem Cell and Regenerative Medicine at Baylor.

Full story at Science Daily